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Resonator Filters
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Abstract-- The paper presents novel coupling schemes for
microwave resonator filters. Some of these solutions contain more
than one main path between the input and output. These paths
may be interacting or non-interacting. In other solutions, only
some of the direct (main) couplings are zero. It is shown that
higher-order filter characteristics can be obtained from lower-
order sections, which are connected in parallel between the source
and the load, by proper superposition of the individual lower-
order r Possible applications of these solution to actual
design problems are discussed.

Index Terms—resonator filters, elliptic filters, band-pass
filters, synthesis, N-path filters, design, dual-mode filters.

1.. INTRODUCTION

HE synthesis and design of elliptic and pseudo-elliptic
coupled resonator filters is an important part in the design
of components for modern communication systems. Filtering
structures for these systems are required to provide sharp
cutoff slopes, asymmetric responses and equalized group
delay. All these features can be successfully achieved by filters
with transmission zeros at finite frequencies in the complex
plane.

An examination of the synthesis techniques available in the
literature shows that elliptic and pseudo-elliptic filters are
considered as perturbed versions of the ali-pole Chebychev
solution for a filter of the same order, center frequency,
bandwidth and ripple level. The perturbation, which takes the
form of cross or bypass couplings, is responsible for bringing
the transmission zeros from infinity to finite positions in the
complex plane. In particular, the coupling and routing scheme
of these filters always include a main path in which the i® and
(i+1)™ resonators are directly coupled with relatively strong
direct or main couplings. Fig. la depicts in principle the
conventional coupling scheme for a 4-pole elliptic function
filter design. The actual determination of the values of the
coupling coefficients can be done using extractjon techniques,
which may be followed by similarity transformations to
eliminate unwanted and un-realizable couplings [1-5], or by
optimization [6]-{10]. 5

This paper is written to introduce new solutions to the
elliptic and pseudo-elliptic coupled resonator filters where
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Figure 1. Coupling schemes of 4-pole filters providing elliptic function
characteristics. a) conventional with cross coupling b) 2-paths (non-
interacting) and c) 2-paths (interacting).

some of the direct (main) couplings are zero. These solutions,
which may involve coupling the source and the load to more
than one resonator, contain more than one main path (N-path
filters) for the signal between the source and the load. These
paths may originate at the source and terminate at the load (c.f.
schemes of 4-pole filter examples in Fig 1b, Ic) or originaté
and terminate between internal resonators. There may also be
non-interacting, as in parallel realization [11]-[12], or
interacting through additional bypass or cross-couplings. Some
of these solutions can be used to design dual-mode filters
without intra-cavity couplings. }

An interesting property of filters consisting of several
parallel non-interacting main paths between the source and the
load is the fact that the response of the individual paths yield
the response of the complete filter by proper superposition.
Consequently, these new solutions may facilitate the
realization of higher-order filters by breaking them down into
separate parallel sections which are designed and tuned
separately and then interconnected at the interface ports.

II. SYNTHESIS PROBLEM

» The model used for the set of coupled resonators is based on
the structure proposed by Atia and Williams with proper
extension to include source/load-multi-resonator couplings.
The synthesis problem consists in determining the coupling
coefficients, which are assumed frequency-independent, and
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the frequency shifts of the resonators such that the response of
the structure is identical to a prescribe elliptic or pseudo-
elliptic response. To this end, we use the technique presented
in [10]. In this technique, the entries of the coupling matrix are
used as independent variables in a gradient-based optimization
technique where a sufficient cost function is used. The
generality of this technique allows the investigation of new
topologies for resonator filters. Details and some examples can
be found in [10].

The first step in the synthesis is to select a coupling scheme
(topology matrix) which is known to generate the required
number of finite transmission zeros. This number can be
determined using the algorithm in [13] or [14)]. The choice of
the topology is ultimately dictated by the limitations of the
technology used for the implementation. More specifically, we
are interested in synthesizing coupled resonator filters where
some of the direct couplings are zeros. These topologies can
be used to eliminate intra-cavity couplings in dual-mode cavity
filters, for example.

Obviously, if the only concern were the elimination of some
specific direct couplings the problem would be a trivial
exercise. What needs to be achieved is- the elimination of
selected direct couplings without creating new cross or bypass
couplings which may not be realizable due to structural
constraints or a given technology. One may still argue that
even this goal could be achieved in principle using a series of
similarity transformations (rotations). However, there is no
known approach to determine such a series or even to establish
the existence of one beforehand. Consequently, we apply the
technique described in [10] where the desired topology is
strictly enforced, in particular the vanishing of specific main
couplings.

III. RESULTS

In the following we present a number of examples of elliptic
and pseudo-elliptic filters where some of the direct couplings
missing. In broad terms these fall into two classes: a) N-path
filters where the paths are non-interacting and b) N-path filters
where the paths are interacting. Examples from both classes
are given below.

A. Two-resonator filter with one transmission zero.

We assume that the normalized position of the transmission
zero is = -3.5 and the in-band return loss of the filter is
20dB (c.f. response Fig. 2). Using only 2 resonators, it is not
possible to generate any transmission zeros unless the source
and the load are coupled to more than one resonator. This can
be shown using the algorithm in [14], for example. However; it
is possible to generate up to two transmission zeros if the
source and the load are coupled to each of the two resonators
and possibly to each other [14]. More specifically, a possible
conventional coupling and routing scheme providing the
desired filter response in is shown in Figure 2a.

The coupling matrix corresponding to this topology is
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Fig. 2. Coupling schemes for 2-pole filter with one arbitrarily located
transmission zero, a) conventional with cross coupling, b) 2-pahts
non-interacting and c) all direct couplings present

0 1.1178 -0.5770 0

| 1178 07941 13969 0 M
T|-0.5770 13969 -0.6482 12574
0 0 12574 0

Another possibility is the topology shown in Figure 2b
where there is no direct coupling between resonators 1 and 2.
There are two non-interacting paths which both originate at the
input and terminate at the load. The coupling matrix for this
topology satisfying the same 2-pole response is

0 0.6544 -1.0743 0

| 06544 16450 0  0.6544 @
T)-1.0743 0 -14991 1.0743
0 06544 10743 0

Obviously there are more coupling schemes where more
coupling coefficients are present leading to denser coupling
matrices as in Figure 2¢ for example.

The response of the coupling matrices, which are obtained
from a direct analysis using the expressions for the scattering
parameters S, and S;; given in (10], are shown in Fig. 3. Also
plotted simultaneously, but not visible, is the response of the
prototype. The three results agree within plotting accuracy and
cannot be distinguished.

Noteworthy for the parallel structure without interaction
(Fig. 2b) is the fact that it can be regarded as two separate 1-
pole filters connected in parallel-the superposition of the
individual responses (c.f. Fig. 4) yield the desired asymmetric
2-pole filter characteristic of Fig. 3.

A possible implementation of this solution in Fig. 2b is the
use of a dual-mode cavity where the two resonance modes are
not directly coupled. In fact, such a structure was recently
presented using TE,y;, and TE,; modes in a rectangular
waveguide [15] where the coupling mechanism was not
\investigated.

B. Four-resonator filter with two transmission zeros.
The second example is a 4-resonator elliptic function filter
with 2 transmission zeros which are located at + 4.9
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Figure 3. Reflection and transmission coefficients (dB) of the 2-pole
filters as obtained from the matrices in equations (1), (2) and prototype.
All results agree within plotting accuracy.
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Figure 4. Reflection and transmission coefficients (dB) of separate
parallel 1-pole filter sections of structure Fig. 2b (solid line: path 1;
dashed line: path 2; according coupling factors of (2)) — superposition
yields response of Fig. 3 (normalized frequency according to Fig. 3)

(normalized frequencies) and an in-band return loss of 23 dB.
A classical canonical solution to this problem consists in cross-
coupling resonators 1| and 4 with a negative coupling
coefficient (c.f. Fig. 1a). The respective coupling matrix can
be obtained by standard synthesis methods and is not
reproduced here due to lack of space. Another solution in
which the direct coupling My; is zero is shown in Fig. 1b.

In this solution, there are two non-interacting paths between
the source and the load. The coupling matrix corresponding to
this configuration (Fig. 1b) is

0 0618 0 -09133 0 0
06185 0 14156 0 0 0
0 14156 0 0 0 06185
M= 00133 o 0 0 06941 0 3)
0 0 0 06941 0 09133
0 0 06185 0 09133 0

Owing to the two separate main path sections between
source and load port, this solution can also be regarded as two
2-pole filters in parallel. The superposition of their different
responses (c.f. Fig. 6) yield the 4-pole characteristic of the
overall structure, similar as for the respective 2-pole filter
design above. However, it should be noted that in the final
interconnection the respective phases (coupling signs) of the

individual paths have to be considered.

An example for a possible realization of this topology using
rectangular waveguide cavities is shown in Fig. 7. It consists
of two separate inline filter sections in parallel, each
comprising two TE101 mode cavities with irises for the inter-
cavity coupling and for the interconnection with the waveguide
bifurcations at the waveguide interfaces. It should be noted
that the inter-cavity irises of one section are of inductive while
those of the other are of capacitive nature to account for the
respective signs in the coupling matrix.

Another interesting solution to this problem is shown in Fig.
Ic. In this case, there are couplings between the two paths as
opposed to the previous one. This structure admits solutions in
which the resonators are detuned as well as those in which they
are not. Two of these are the following two coupling matrices

[ o 08610 0 0.7612 0 0
0.8610 0.9011 0.5125 0 0.3712 0
0 05125 09011 -03712 0 0.8610
M= 4.
07612 0  -03712 —1.1527 -0.2655 0
0 03712 0 -0.2655 1.1527 -0.7612
| o 0 0.8610 0 ~0.7612 0
and
[ 0 1088 0  -02048 0 0
10838 0 0.7813 0 03339 0
7813 0 -1.0549 0  ~0.1665
m=l O 0.7 )
-02048 0  -1.0549 0 08067 0
0 03339 0 0.8067 0 1.0904
0 0 -01665 O 1.0904 0

Note that whether a direct coupling is present or not in Fig.
1c depends on the numbering of the resonances. For Fig.1c,
there is a direct path between the source and the load but the
direct coupling coefficient between resonators 2 and 3 is
negative.

The response of all the 4-pole filter coupling matrices (3)-
(5) is shown in Fig. 5. Although all of them are superimposed,
they can no be distinguished which is expected since they are
all solutions to the same filter.

C. More Examples

In this section we list several cases which have been
examined to highlight some aspects of the new solutions.

Figures 8a-c show coupling schemes for filters of different
orders. Figure 8a shows a topology for a 4-resonator filter with
one transmission zero. Note that the non-interacting paths do
not originate at the source and terminate at the load as in the
previous examples. This particular solution, which shows the
flexibility of the new approach, can be implemented in dual-
mode cavity filter designs, e.g., enhancing the realization of
asymmetric responses as will be discussed during the
presentation.

The solution in Fig. 8b can be implemented using a dual-
«mode cavity in which the dual modes are not coupled, and a
mono-mode cavity which is connected to the load. Similarly,
the solution in Fig. 8c can be implemented using 3 dual-mode
cavities in which there are no intra-cavity couplings. Finally,
note that higher order filters were also examined and will be’
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Figure 5. Reflection and transmission coefficients (dB) of 4-pole filters as
obtained from the standard synthesis and matrices (3)~(5) corresponding to
coupling schemes in Fig 1. All resuits agree within plotting accuracy.
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Figure 6. Reflection and transmission coefficients (dB) of the two separate
2-pole filter sections of structure Fig. 1b, solid lines, path 1-2, dashed lines,
path 3-4, (coupling factors according (3)), dotted line: resulting s21 4-pole
characteristic as Fig. 5

discussed during the presentation.

IV. CONCLUSIONS AND QUTLOOK

Novel solutions to the synthesis problem of coupled
resonator elliptic filters were presented. A salient feature of
these solutions is the fact that some of their direct (main)

. .couplings are zero.

These solutions

/ Y4 contain two or

® @ more main paths
w k / for the signal
between the source

and load. These

/ \ paths can be either
interacting or non-

\ /° © interacting. . It is
shown that higher

order filter

responses can be
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separate  parallel

\ o_ e—-— Q/ connected  lower
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Figure 8. Other cases of new solutions
for filter with finite transmission zeros.

Fig. 7. Possible realization of 4-pole filter structure given in Fig. 1b with
2by?2 rectangular waveguide cavity configuration

proper super-position of the different responses of the
individual sections.

Owing to the generality of this approach it is not restricted
to waveguide cavity filters and, thus, may initiate advanced
designs for other microwave filter types as e.g..
dielectric/metallic loaded, combline, strip line, etc..
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