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Novel Coupling Schemes for Microwave 
Resonator Filters 
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Abstract-- The paper presents novel coupling schemes for 
microwave resonator filters. Some of these solutions contain more 
than one main path between the input and output. These paths 
may be interacting or non-interacting. In other solutions, only 
some of the direct (main) couplings are zero. It is shown that 
higher-order filter characteristics can be obtained from lower- 
order sections, which are connected in parallel between the source 
and the load, by proper superposition of the individual lower- 
order responses. Possible applications of these solution to actual 
design problems are discussed. 

Index Terms-resonator filters, elliptic filters, band-pass 
filters, synthesis, N-path filters, design, dual-mode filters. 

I. ) INTRODUCTION 

T HE synthesis and design of elliptic and pseudo-elliptic 
coufiled resonator filters is an important part in the design 

of components for modem conimunication systems. Filtering 
structures for these systems are required to provide sharp 
cutoff slopes, asymmetric responses and equalized group 
delay. All these features can be successfully achieved by filters 
with transmission zeros at finite frequencies in the complex 
plane. 

An examination of the synthesis techniques available in the 
literature shows that elliptic and pseudo-elliptic filters are 
considered as perturbed versions of the all-pole Chebychev 
solution for a filter of the same order, center frequency, 
bandwidth and ripple level. The perturbation, which takes the 
form of cross or bypass couplings, is responsible for bringing 
the transmission zeros from infinity to finite positions in the 
complex plank In particular, the coupling and routing scheme 
of these filters always include a main path in which the ith and 
(i+l)‘h resonators are directly coupled with relatively strong 
direct or main couplings. Fig. la depicts in principle the 
conventional coupling scheme for a 4-pole elliptic function 
filter design. The actual determination of the values of the 
coupling coefficients can be done using extractjon techniques, 
which may be followed by similarity transformations to 
eliminate unwanted and un-realizable couplings [l-5], or bjl 
optimization [6]-[ lo]. 

This paper is written to introduce new solutions to the 

elliptic and pseudo-elliptic coupled resonator filters where 
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Figure 1. Coupling schemes of 4-pole filters providing elliptic function 
characteristics. a) conventional with cross coupling b) 2-paths (non- 
interacGng) and c) 2-paths (interacting). 

some of the direct (main) couplings are zero. These solutions, 
which may involve coupling the source and the load to more 
than one resonator, contain more than one main path (N-path 
filters) for the signal between the source and the load. These 
paths may originate at the source and terminate at the load (cf. 
schemes of 4-pole filter examples in Fig 1 b, lc) or originate 
and terminate between internal resonators. There may also be 
non-interacting, as in parallel realization [ 1 l]-[12], or 
interacting through additional bypass or cross-couplings. Some 
of these solutions can be used to design dual-mode filters 
without intra-cavity couplings. 

An interesting property of filters consisting of several 
parallel non-interacting main paths between the source and the 
load is the fact that the response of the individual paths yield 
the response of the complete filter by proper superposition. 
Consequently, these new solutions may facilitate the 
realization of higher-order filters by breaking them down into 
separate parallel sections which are designed and tuned 
separately and then interconnected at the interface ports. 

II. SYNTHESIS PROBLEM 

, The model used for the set of coupled resonators is based on 
the structure proposed by Atia and Williams with proper 
extension to include source/load-multi-resonator couplings. 
The synthesis problem consists in determining the coupling 
coefficients, which are assumed frequency-independent, and 
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the frequency shifts of the resonators such that the response of 
the structure is identical to a prescribe elliptic or pseudo- 
elliptic response. To this end, we use the technique presented 
in [lo]. In this technique, the entries of the coupling matrix are 
used as independent variables in a gradient-based optimization 
technique where a sufficient cost function is used. The 
generality of this technique allows the investigation of new 
topologies for resonator filters. Details and some examples can 
be found in [lo]. 

The first step in the synthesis is to select a coupling scheme 
(topology matrix) which is known to generate the required 
number of finite transmission zeros. This number can be 
determined using the algorithm in [13] or [14]. The choice of 
the topology is ultimately dictated by the limitations of the 
technology used for the implementation. More specifically, we 
are interested in synthesizing coupled resonator filters where 
some of the direct couplings are zeros. These topologies can 
be used to eliminate intra-cavity couplings in dual-mode cavity 
filters, for example. 

Obviously, if the only concern were the elimination of some 
specific direct couplings the problem would be a trivial 
exercise. What needs to be achieved is the elimination of 
selected direct couplings without creating new cross or bypass 
couplings which may not be realizable due to structural 
constraints or a given technology. One may still argue that 
even this goal could be achieved in principle using a series, of 
similarity transformations (rotations). However, there is no 
known approach to determine such a series or even to establish 
the existence of one beforehand. Consequently, we apply the 
technique described in [lo] where the desired topology is 
strictly enforced, in particular the vanishing of specific main 
couplings. 

III. RESULTS 

In the following we present a number of examples of elliptic 
and pseudo-elliptic filters where some of the direct couplings 
missing. In broad terms these fall into two classes: a) N-path 
filters where the paths are non-interacting and b) N-path filters 
where the paths are interacting. Examples from both classes 
are given below. 

A. Two-resonatorfilter with one transmission zero. 

We assume that the normalized position of the transmission 
zero is L? = -3.5 and the in-band return loss of the filter is 
20dB (cf. response Fig. 2). Using only 2 resonators, it is not 
possible to generate any transmission zeros unless the source 
and the load are coupled to more than one resonator. This can 
be shown using the algorithm in [ 141, for example. However; it 
is possible to generate up to two transmission zeros if the 
source and the load are coupled to each of the two resonators 
and possibly to each other [14]. More specifically, a possible 
conventional coupling and routing scheme providing the 
desired filter response in is shown in Figure 2a. 

The coupling matrix corresponding to this topology is 

b. 

Fig. 2. Coupling schemes for 2-pole filter with one arbitrarily located 
transmission zero, a) conventional with cross coupling, b) 2-pahts 
non-interacting and c) all direct couplings present 

M= 

0 1.1178 -0.5770 0 

1.1178 0.7941 1.3969 0 
-0.5770 1.3969 -0.6482 (1) 

0 0 1.2574 

1.2574 J 

0 

Another possibility is the topology shown in Figure 2b 
where there is no direct coupling between resonators 1 and 2. 
There are two non-interacting paths which both originate at the 
input and terminate at the load. The coupling matrix for this 
topology satisfying the same 2-pole response is 

0 0.6544 -I .0743 01 

M= 
0.6544 1.6450 0 0.6544 

-1.0743 0 -1.4991 1.0743 I (2) 

1 0 0.6544 1.0743 0 I 

Obviously there are more coupling schemes where more 
coupling coefftcients are present leading to denser coupling 
matrices as in Figure 2c for example. 

The response of the coupling matrices, which are obtained 
from a direct analysis using the expressions for the scattering 
parameters S,, and SZ1 given in [IO], are shown in Fig. 3. Also 
plotted simultaneously, but not visible, is the response of the 
prototype. The three results agree within plotting accuracy and 
cannot be distinguished. 

Noteworthy for the parallel structure without interaction 
(Fig. 2b) is the fact that it can be regarded as two separate l- 
pole filters connected in parallel-the superposition of the 
individual responses (cf. Fig. 4) yield the desired asymmetric 
2-pole filter characteristic of Fig. 3. 

A possible implementation of this solution in Fig. 2b is the 
use of a dual-mode cavity where the two resonance modes are 
not directly coupled. In fact, such a structure was recently 
presented using TEIM and TElol modes in a rectangular 
waveguide [ 151 where the coupling mechanism was not 
,investigated. 

B. Four-resonator$lter with two transmission zeros. 

The second example is a 4-resonator elliptic function filter 
with 2 transmission zeros which are. located at f  4.9 

1606 



40 -6 0 
Ilmm.bm Frrqu& ~----c 

IO 

Figure 3. Reflection and transmission coefficients (dB) of the 2-p& 
filters as obtained from the matrices in equations (l), (2) and prototype. 
All results agree within plotting accuracy. 

Figure 4. Reflection and transmission coefftcients (dB) of separate 
parallel l-pole filter sections of structure Fig. 2b (solid line: path 1; 
dashed line: path 2; according coupling factors of (2)) - superposition 
yields response of Fig. 3 (normalized frequency according to Fig. 3) 

(normalized frequencies) and an in-band return loss of 23 dB. 

A classical canonical solution to this problem consists in cross- 
coupling resonators 1 and 4 with a negative coupling 

coefftcient (cf. Fig. la). The respective coupling matrix can 

be obtained by standard synthesis methods and is not 
reproduced here due to lack of space. Another solution in 
which the direct coupling Mr3 is zero is shown in Fig. lb. 

In this solution, there are two non-interacting paths between 

the source and the load. The coupling matrix corresponding to 
this configuration (Fig. lb) is 

0 0.6185 0 -0.9133 0 0 

0.6185 0 1.4156 0 0 0 

M= O 
1.4156 0 0 0 0.6185 

-0.9133 0 0 0 0.6941 0 (3) 

0 0 0 0.6941 0 0.9133 

0 0 0.6185 0 0.9133 0 

Owing to the two separate main path sections between 
source and load port, this solution can also be regarded as two 

2-pole filters in parallel. The superposition of their different 

responses (c.f. Fig. 6) yield the 4-pole characteristic of the 
overall structure, similar as for the respective 2-pole filter 

design above. However, it should be noted that in the final 

interconnection the respective phases (coupling signs) of the 

individual paths have to be considered. 

An example for a possible realization of this topology using 
rectangular waveguide cavities is shown in Fig. 7. It consists 

of two separate inline filter sections in parallel, each 
comprising two TElOl mode cavities with irises for the inter- 

Cavity coupling and for the interconnection with the waveguide 
bifurcations at the waveguide interfaces. It should be noted 
that the inter-cavity irises of one section are of inductive while 

those of the other are of capacitive nature to account for the 
respective signs in the coupling matrix. 

Another interesting solution to this problem is shown in Fig. 

lc. In this case, there are couplings between the two paths as 

opposed to the previous one. This structure admits solutions in 
which the resonators are detuned as well as those in which they 
are not. Two of these are the following two coupling matrices 

r 0 0.8610 0 0.7612 0 0 - 

0.8610 0.9011 0.5125 0 0.3712 0 

0 
M= 

0.5125 0.9011 -0.3712 0 0.8610 

0.7612 0 -0.3712 -1.1527 -0.2655 0 
(4). 

0 0.3712 0 -0.2655 1.1527 -0.7612 

0 0 0.8610 0 -0.7612 0 

and 
0 1.0838 0 -0.2048 0 0 

1.0838 0 0.7813 0 0.3339 0 

M= 
0 0.7813 0 -1.0549 0 -0.1665 

-0.2048 0 -1.0549 0 0.8067 0 
(5) 

0 0.3339 0 0.8067 0 1.0904 

0 0 -0.1665 0 1.0904 0 

Note that whether a direct coupling is present or not in Fig. 

lc depends on the numbering of the resonances. For Fig.lc, 
there is a direct path between the source and the load but the 
direct coupling coefftcient between resonators 2 and 3 is 

negative. 
The response of all the 4-pole filter coupling matrices (3)- 

(5) is shown in Fig. 5. Although all of them are superimposed, 
they can no be distinguished which is expected since they are 

all solutions to the same filter. 

C. More Examples 

In this section we list several cases which have been 
examined to highlight some aspects of the new solutions. 

Figures Sa-c show coupling schemes for filters of different 
orders. Figure 8a shows a topology for a 4-resonator filter with 

one transmission zero. Note that the non-interacting paths do 
not originate at the source and terminate at the load as in the 

previous examples. This particular solution, which shows the 
flexibility of the new approach, can be implemented in dual- 
mode cavity filter designs, e.g., enhancing the realization of 

asymmetric responses as will be discussed during the 

presentation. 
The solution in Fig. 8b can be implemented using a dual- 

<mode cavity in which the dual modes are not coupled, and a 
mono-mode cavity which is connected to the load. Similarly, 

the solution in Fig. 8c can be implemented using 3 dual-mode 
cavities in which there are no intra-cavity couplings. Finally, 
note that higher order filters were also examined and will be’ 
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Figure. 5. Reflection and transmission coefftcients (dB) of 4-pole filters as 
obtained from the standard synthesis and matrices (3)-(S) corresponding to 
coupling schemes in Fig 1. All results agree within plotting accuracy. 
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Figure 6. Reflection and transmission coefficients (dB) of the two separate 
2-pole filter sections of structure Fig. lb, solid lines, path 1-2, dashed lines, 
path 3-4, (coupling factors according (3)), dotted line: resulting ~21 4-pole 
characteristic as Fig. 5 

discussed during the presentation. 

IV. CONCLUSIONS AND OUI’LQOK 

Novel solutions to the synthesis problem of coupled 
resonator elliptic filters were presented. A salient feature of 
these solutions is the fact that some of their direct (main) 

couplings are zero. 
These solutions 
contain two or 
more main paths 
for the signal 
between the source 
and load. These 
paths can be either 

order filter 

order filter sections 
Figure 8. Other cases of new solutions 
for filter with finite transmission zeros. 

between source and 
load ports due to 

Fig. 7. Possible realization of 4-pole filter structure given in Fig. lb with 
2by2 rectangular waveguide cavity configuration 

proper super-position of the different responses of the 
individual sections. 

Owing to the generality of this approach it is not restricted 
to waveguide cavity filters and, thus, may initiate advanced 
designs for other microwave filter types as e.g. 
dielectric/metallic loaded, combline, strip line, etc.. 
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